This Manual is provided by # Someone who wanted to help you repair your equipment scanned this manual. If you would like to help us put more manuals online support us. Supporters of CBTricks.com paid for the hosting so you would have this file. CBTricks.com is a non-commercial personal website was created to help promote the exchange of service, modification, technically oriented information, and historical information aimed at the Citizens Band, GMRS (CB "A" Band), MURS, Amateur Radios and RF Amps. CBTricks.com is not sponsored by or connected to any Retailer, Radio, Antenna Manufacturer or Amp Manufacturer, or affiliated with any site links shown in the links database. The use of product or company names on my web site is not endorsement of that product or company. If your company would like to provide technical information to be featured on this site I will put up on the site as long as I can do it in a non-commercial way. The site is supported with donation from users, friends and selling of the Galaxy Service Manual CD to cover some of the costs of having this website on the Internet instead of relying on banner ads, pop-up ads, commercial links, etc. to pay my costs. Thus I do not accept advertising banners or pop-up/pop-under advertising or other marketing/sales links or gimmicks on my website. ALL the money from donations is used for CBTricks.com I didn't do all the work to make money (I have a day job). I all didn't do all this work for someone else to make money also, for example the ebay CD sellers. All Trademarks, Logos, and Brand Names are the property of their respective owners. This information is not provided by, or affiliated in any way with any radio or antenna Manufacturers. Thank you for any support you can give. ## MODEL 2701 CITIZEN TWO-WAY RADIO 40 channel mobile Manufactured and Distributed by Hy-Gain de Puerto Rico, Inc. P.O. Box 68 State Hwy. 31, Km. 4.0 Naguabo, Puerto Rico 00718 ## **Table of Contents** | CHAPTER 1 — GENERAL INFORMATION Introduction | 1
1
2 | |--|---------------------| | CHAPTER 2 — THEORY OF OPERATION General | 3
4 | | CHAPTER 3 — ALIGNMENT General Recommended Tools and Equipment Transmitter Alignment Procedure Equipment Set-up Pre-Alignment Frequency Check VCO Alignment Transmitter Alignment Procedure Transmitter Frequency Check Modulation Sensitivity Adjustment Receiver Alignment Procedure Equipment Set-up Receiver Alignment Tight Squelch Adjustment | 7 7 8 8 10 10 10 10 | | CHAPTER 4 — CHARTS AND DRAWINGS Voltage Measurement Charts Main P.C. Board Component Outline Chassis Mounted Components Parts List Schematic Diagram | 19 | ## List of Illustrations | Figure | e | page | |---------------|--|-----------| | 2-Ĭ | PLL Circuitry Model 2701 | 5 | | 2-2 | Block Diagram Model 2701 | . Foldout | | 3-1 | Equipment Set-up, Transmitter Alignment | 8 | | 3-2 | Connection of Frequency Counter and Dummy Load | 9 | | 3-3 | Equipment Set-up, Receiver Alignment | 10 | | 3-4 | Components Adjusted for Transmitter Alignment | 12 | | 3-5 | Components Adjusted for Receiver Alignment | 13 | | 4-1 | Component Outline, Model 2701 | 21 | | 4-2 | Chassis Mounted Components, Model 2701 | 25 | | 4-3 | Schematic Diagram, Model 2701 | . Foldout | #### **CHAPTER 1—GENERAL INFORMATION** #### Introduction This service manual contains all the information needed to service and repair the Hy-Gain I (Model 2701) transceiver. It includes an explanation of theory of operation and alignment procedures. Revision, addendum, and errata sheets will be published as needed. Insert them as required in the manual. The Hy-Gain I radio is a full 40-channel transceiver designed and type accepted for Class D Citizens Radio Service, as designated by the Federal Communications Commission (FCC). It is a compact mobile unit, completely solid-state and highly reliable with low power consumption. The PLL (Phase Locked Loop) synthesizer provides immediate operation on all 40 channels. Model 2701 incorporates an automatic noise limiter (ANL). Output jacks for an optional telephone-style handset are also included. Use the unit with 12 VDC (nominal), either negative or positive ground. #### Warranty Service Department For help with technical problems, for parts information, and information on local and factory repair facilities, contact the National Service Manager. When you write, please include all pertinent information that may be helpful in solving your problem. Address your letter to: Hy-Gain Warranty Service Department 4900 Superior Street Lincoln, Nebraska 68504 ATTN: National Service Manager The Warranty Service Department can repair any unit. Before shipping the unit, contact the National Service Manager. Often a problem is field solvable with just a little extra help. This can save lost time and shipping costs. Limit factory returns to difficult problems. #### How to Ship Returns To return a unit, get a return authorization. This is important. Handling of the unit may be delayed if shipped without it. If the unit must be shipped immediately, telephone or telex the National Service Manager for expeditious service. When you request authorization, notification of repairs may also be requested. The notification will include a copy of the bill. Paying the bill before the return of the unit can save the cost of a C.O.D. fee. For warranty repair, prepare a letter in duplicate containing the following information (for out-of-warranty repair delete items 2 and 3): - 1. your name and address - 2. purchaser's name and address - 3. proof of purchase - 4. serial number - 5. a complete description of the problem - 6. the return authorization Check the unit to see that all parts and screws are in place and attach an envelope containing a copy of the letter directly to it so this information is not overlooked. Wrap the unit and the envelope in heavy paper or put it in a plastic bag. If the original carton is not available, place the unit in a strong carton at least six inches larger in all three dimensions than the unit. Fill the carton equally around the unit with resilient packing material (shredded paper, excelsior, bubble pack, etc.). Seal the box with gummed paper tape, tie it with a strong cord, and ship it by prepaid express, United Parcel Service, or insured parcel post to the address given previously. Mail the original of the letter in a second envelope to that same address. It is important that the shipment be well packed and fully insured. Damage claims can delay repair and return of the unit. All claims must be settled between you and the carrier. All shipments must be sent *PREPAID*. We do not accept collect shipments. After the unit has been repaired we will send it back COD unless the bill has been prepaid. Unclaimed or refused COD shipments will not be reshipped until payment in full is received. These items become the property of Hy-Gain 60 days after refusal or return and will be sold for payment of charges due. #### Units with unauthorized field modifications cannot be accepted for repair. #### Purchase of Parts Parts can be purchased from any Hy-Gain Service Center or from the factory Warranty Service Department. When ordering, please supply the following information: - 1. unit model number - 2. unit serial number - 3. part description - 4. part number | Specifications | S | p | e | c | i | fi | C | a | ti | o | n | s | |-----------------------|---|---|---|---|---|----|---|---|----|---|---|---| |-----------------------|---|---|---|---|---|----|---|---|----|---|---|---| | General Channels | all 40 channels in the Citizens Band | |-----------------------------|--| | | (26.965 MHz - 27.405 MHz) | | Antenna impedance | .50 ohms, nominal .11.5 VDC - 14.5 VDC negative or positive | | Tower requirements | ground | | Compliance | .type accepted under the FCC Rules, Part 95 | | Receiver Section | | | Circuitry | dual conversion superheterodyne with rf | | Sensitivity | amplifier stage and 455 kHz ceramic filter .0.7 uV for 10 dB (S+N)/N ratio | | Intermediate frequency | .1st IF - 10.695 MHz | | Audio cutout | 2nd IF - 455 kHz | | Audio output | | | Transmitter Section | | | RF power output | | | Emission | . AM, type 6A3
. all harmonic and spurious suppression better | | opulious response rejection | an namonic and spundus suppression better | Current drain, transmitless than 1.2 amp @ 13:8 VDC than FCC requirements #### **CHAPTER 2—THEORY OF OPERATION** #### General The theory of operation of the Hy-Gain I transceiver is divided into three sections: the Phase Locked Loop Frequency Synthesizer, the Receiver, and the Transmitter. This material covers the functioning of the transceiver with a minimum of technical involvement. We have not attempted to explain the engineering techniques and approaches that arrived at these circuit designs. Refer to the block diagram, Figure 2-2, for visual reference to the theory of operation. #### Phase Locked Loop Frequency Synthesizer The Phase Locked Loop (PLL) frequency synthesizer generates frequencies for use in both the transmitter and receiver section. Its output determines the channel on which the transceiver is operating. The PLL circuitry incorporates three crystal oscillators to perform its frequency generating function. The 11.8066 MHz Oscillator, Q105, has its output tripled and serves as a prescaler for the output of the Voltage Controlled Oscillator (VCO), Q101. The Offset Oscillator, Q109, operates at a frequency of 10.695 MHz, which mixes with the VCO output to provide the transmit frequency. The 10.24 MHz Oscillator, Q117, provides a reference for the PLL and an injection frequency for the Second Receiver Mixer. The PLL circuit generates the operating frequencies needed for the transceiver in accordance with the code fed to the programmable divider, IC101, from the channel selector switch. Table A shows the following for each channel: the channel frequency, VCO frequency, binary code and the division ratio of the programmable divider. For example, assume that channel 1 has been selected. The channel frequency is 26.965 MHz, the VCO frequency is 39.660 MHz, and the binary code ("N" code) is 224. The channel selector switch programs the programmable divider for a division ratio of 224. The 10.24 MHz reference frequency is fed to the Integrated Circuit PLL Chip, IC101. It is divided by 1024 within the chip, producing a 10 kHz reference signal. The output of the VCO is mixed in the PLL mixer, Q102, with the tripled output of Q105, producing a 2.24 MHz signal. This signal is fed to the programmable divider, which divides it by 224 to produce 10 kHz. The two 10 kHz signals are phase compared in the phase detector within IC101 producing a DC voltage. This DC voltage controls the varactor diode, D102, and holds the VCO frequency at 37.660 MHz. Assume that the channel is changed to channel 40. The channel selector switch now provides a code that will produce a division ratio of 268. At this instant the VCO frequency is at 37.660 MHz, which is mixed with the tripled output of Q105. Again, the PLL Mixer, Q102, produces an output of 2.24 MHz. The 2.24 MHz signal is divided by 268 to produce a frequency of 8.32 kHz. The 8.32 kHz output, along with the 10 kHz obtained from the reference oscillator, is fed to the phase detector. The comparison of the two frequencies in the phase detector produces an error output which is a combined AC-DC voltage. The low pass filter removes the AC component and allows only the DC voltage to be fed to the VCO. The VCO frequency changes until the output of the programmable divider is again 10 kHz. When the two frequencies are matched at 10 kHz, the error voltage output of the phase detector is zero. There is now a new DC voltage set up to tune the VCO frequency to 38.100 MHz. When this occurs the loop is considered locked. With the channel selector at 40, the following outputs of the PLL circuitry are produced: the 38.100 MHz VCO output is fed to the First Receiver Mixer, and in the transmit mode, is mixed with the 10.695 MHz output of Q109 to produce a transmit frequency of 27.405 MHz. #### Receiver The receiver is a dual-conversion superheterodyne, receiving AM signals from 26.965 MHz to 27.405 MHz. The operating channel is determined by the PLL frequency synthesizer, which provides the local oscillator frequency to the First Mixer. A variable squelch circuit is included to quiet the receiver between transmissions. In the receive mode, 13.8 VDC is supplied to IC102, Q114, Q115, Q118, Q119 and to Q106 (the AVR). The AVR supplies regulated voltage to the synthesizer stages and to the Reference Oscillator, Q117. A bias voltage is also applied to the base of the Transmit Switch keeping it open so that the transceiver circuits remain in receive. Radio signals are received by the antenna and enter the radio at the antenna jack. The filter formed by L109, L110, C152, and C1 matches the antenna impedance to the RF Amplifier. Signals in the 26.965 MHz - 27.405 MHz range are filtered and amplified by the RF Amplifier, L114, and its tuned circuit C154/T104 and T105. D107 is a signal overload protector. The output of the RF Amplifier and the buffered VCO signal (which in this case could be called the "first local oscillator frequency") are applied to the First Receiver Mixer and produce an output of 10.965 MHz, which is the first IF. The first IF passes through tuned circuits L112 and T106. It is then applied to the Second Receiver Mixer, Q116, along with 10.240 MHz from the Reference Oscillator, Q117. The two signals are mixed in the Second Receiver Mixer and produce an output of 455 KHz, which is the second IF. The second IF passes through the Ceramic Filter, CF101, and is amplified by Q118 and Q119. The amplified signal is then fed to the Detector, D110. The Detector establishes an automatic gain control (AGC) voltage and recovers the audio from the modulated signal. The AGC voltage maintains the output volume of the receiver constant under variations in input signal strength and also controls the Squelch Switch, Q102. The squelch functions in the following manner: in the receive mode, a bias voltage from Q106 is applied to the base of Q120, as determined by RV101. In the absence of the signal the base of Q120 is positively biased and is on. This biases the squelch transistor inside IC102, which turns off the Audio Amplifier and squelches the receiver. When the signal is received, the AGC voltage developed by D110 biases Q120 off. This biases the squelch transistor inside IC102 such that the audio amplifier is turned on and the signal is heard. The recovered audio from the Detector passes through a series Automatic Noise Limiter (ANL), D108. The output of the ANL goes through the volume control, VR1, and is RC coupled to the Audio Amplifier, IC102. The amplified af output from IC102 passes through the audio transformer, T110, to be applied to the speaker jacks and the speaker. #### **Transmitter** Switching to the transmit mode is accomplished in the following manner: when the PTT switch is closed, the base of the DC Switch, Q107, is grounded. This establishes forward bias which causes Q107 to conduct. Regulated voltage from the Automatic Voltage Regulator (AVR), Q106, is then supplied through Q107 to Q109 and Q110. RF is not applied to Q111, Q112 and Q113. The operating channel is determined by the PLL frequency synthesizer. The buffered VCO frequency is mixed in Q110 with the 10.695 MHz Offset Oscillator, Q109, output to yield the transmit frequency. The transmit frequency from Q110 passes through the filter circuit of L103, L104, and T102 and is applied to the Pre-driver, Q111. The filter circuit Figure 2-1. Block Diagram of PLL Circuitry partially removes spurious signals from the transmit frequency. The Pre-driver, Q111, and the Driver, Q112, form two stages of amplification leading to the final stage. The filter circuit of T103 follows Q111, and L106 follows Q112. These two circuits filter out the remaining spurious signals from the transmit frequency. From the Driver the signal is applied to the final stage, the RF Power Amplifier, Q113. This is a current amplifier that raises the transmit signal to an output of four watts. Its output is applied to a filter, consisting of L109, C152, L110 and C1, and then to the antenna jack. The transmit signal is modulated in the following manner: microphone output is applied to the Audio Amplifier, IC102. The output is applied to the collectors of Q112 and Q113 through the audio output transformer, T110. Control voltages for the transmit audio (ALC), Q122, and the Range Boost, Q121, come from the detector diode D111. The transmit audio ALC boosts, or lowers, the amplifier gain in response to line voltage fluctuations. This ensures full modulation of the carrier despite any changes in line voltage. The Range Boost reduces AF peaks so that a higher average AF level is supplied to the Audio Amplifier. This gives the desired high average modulation without overmodulation of peaks. "N" Code-Frequency Correlation Chart Table A | | | | | PLL INPUT CODE | | | | | | | | | |---------|------------|------|------------|----------------|-------|-----------|------------|-----------|-----------|-----------|------------|-----| | Channel | Channel | "N" | V.C.O. | (256) | (128) | (64) | (32) | (16) | (8) | (4) | (2) | (1) | | No. | Frequency | Code | Frequency | B8 | B7 | B6 | B 5 | B4 | B3 | B2 | B 1 | B0 | | 1 | 26.965 MHz | 224 | 37.660 MHz | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 2 | 26.975 MHz | 225 | 37.670 MHz | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | | 3 | 26.985 MHz | 226 | 37.680 MHz | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | | 4 | 27.005 MHz | 228 | 37.700 MHz | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | | 5 | 27.015 MHz | 229 | 37.710 MHz | 0 | 1 | 1 | 1 | 0 | 0 | . 1 | 0 | 1 | | 6 | 27.025 MHz | 230 | 37.720 MHz | . 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | | 7 | 27.035 MHz | 231 | 37.730 MHz | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | | 8 | 27.055 MHz | 233 | 37.750 MHz | 0 | 1 | - 1 . | 1 | 0 | 1 | 0 | 0 | 1 | | 9 | 27.065 MHz | 234 | 37.760 MHz | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | | 10 | 27.075 MHz | 235 | 37.770 MHz | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | | 11 | 27.085 MHz | 236 | 37.780 MHz | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | | 12 | 27.105 MHz | 238 | 37.800 MHz | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | | 13 | 27.115 MHz | 239 | 37.810 MHz | 0 | 1 | • 1 | 1 | 0 | 1 | 1 | 1 | 1 | | 14 | 27.125 MHz | 240 | 37.820 MHz | 0 | 1 | - 1 | 1 | . 1 | 0 | 0 | 0 | 0 | | 15 | 27.135 MHz | 241 | 37.830 MHz | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | | 16 | 27.155 MHz | 243 | 37.850 MHz | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | | 17 | 27.165 MHz | 244 | 37.860 MHz | 0 | 1 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | | 18 | 27.175 MHz | 245 | 37.870 MHz | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | | 19 | 27.185 MHz | 246 | 37.880 MHz | 0 | 1 | 1 | 1 | 1 | 0 | 1. | 1 | 0 | | 20 | 27.205 MHz | 248 | 37.900 MHz | 0 | 1 | 1 | . 1 | 1 | 1 | 0 | 0 | . O | | 21 | 27.215 MHz | 249 | 37.910 MHz | 0 | 1 | 1 | 1 | - 1 | 1 | 0 | 0 | 1 | | 22 | 27.225 MHz | 250 | 37.920 MHz | 0 | 1 | 1 | 1 | ₹1 | 1 | 0 | 1 | 0 | | 23 | 27.255 MHz | 253 | 37.950 MHz | 0 | 1 | 1 | 1 | 1 | 1 - | 1 | 0 | 1 | | 24 | 27.235 MHz | 251 | 37.930 MHz | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | | 25 | 27.245 MHz | 252 | 37.940 MHz | 0 | 1 | 1 | 1 - | 1 | 1 | 1 | 0 | 0 | | 26 | 27.265 MHz | 254 | 37.960 MHz | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | | 27 | 27.275 MHz | 255 | 37.970 MHz | 0 | 1 | 1 | 1 | 1. | 1 | 1 | 1 | 1 | | 28 | 27.285 MHz | 256 | 37.980 MHz | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 29 | 27.295 MHz | 257 | 37.990 MHz | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 30 | 27.305 MHz | 258 | 38.000 MHz | 1 | 0 | 0 | 0 | 0 | 0 | 0 | - 1 | 0 | | 31 | 27.315 MHz | 259 | 38.010 MHz | 1 | 0 | .0 | 0 | 0 | 0 | 0 | _ 1 | .1 | | 32 | 27.325 MHz | 260 | 38.020 MHz | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | | 33 | 27.335 MHz | 261 | 38.030 MHz | - 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | | 34 | 27.345 MHz | 262 | 38.040 MHz | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | | 35 | 27.355 MHz | 263 | 38.050 MHz | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | , 1 | | 36 | 27.365 MHz | 264 | 38.060 MHz | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 37 | 27.375 MHz | 265 | 38.070 MHz | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | , 1 | | 38 | 27.385 MHz | 266 | 38.080 MHz | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | | 39 | 27.395 MHz | 267 | 38.090 MHz | 1 | 0 | 0 | 0 | 0 | 1. | 0 | 1 | 7.1 | | 40 | 27.405 MHz | 268 | 38.100 MHz | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | #### **CHAPTER 3—ALIGNMENT** #### General These procedures must be followed to align the Hy-Gain I transceiver (Model 2701). Alignment should not be undertaken unless the technician has adequate test equipment and a full understanding of the circuitry of the transceiver. IMPORTANT: Tuning adjustment of this transceiver "shall be made by or under the immediate supervision and responsibility of a person holding a first or second-class commercial radio operator license", as stipulated in Part 95.97 (b) of the FCC Rules and Regulations. The procedures are divided into two main sections: Transmitter Alignment and Receiver Alignment. See *Equipment* below for a complete list of recommended equipment. **NOTE:** The ferrite cores in the tuned coils are easily chipped or broken. Always use care when inserting an alignment tool in the coil; insert it straight into the core. #### Recommended Tools and Equipment The following equipment is recommended for use in aligning the Hy-Gain I transceiver. - 1. Audio Signal Generator, 1 kHz - 2. AC VTVM, 1 mV measurable - 3. DC Ampere Meter, 2A - 4. Variable Regulated Power Supply, DC 8-15V, 2A - 5. Frequency Counter, 0 to 40 MHz, high input impedance type - 6. VTVM with RF probe - 7. Oscilloscope, 30 MHz, high input impedance - 8. RF wattmeter and 50 ohm, 5W dummy load - 9. Standard RF signal generator, 27 MHz CB band - 10. Speaker dummy resistor, 8 ohm, 5W - 11. VOM 20k ohm/V **NOTE:** Test voltage is 13.8 VDC unless otherwise specified. #### Transmitter Alignment Procedure #### **Equipment Set-up** Refer to Figure 3-4 for the location of components to be adjusted for transmitter alignment. Connect test equipment as shown in Figure 3-1. Figure 3-1. Equipment Set-up, Transmitter Alignment *NOTE: See Figure 3-2 for connection of the frequency counter and the dummy load. #### Pre-Alignment Frequency Check Before alignment, use the frequency counter through a 1000 pF coupling capacitor connected in series with a counter input probe to check the operating frequencies at the following points. - 1. Pin 3 of IC101, reference input, check to read 10.24 MHz accurate to four significant digits. If not, proceed to VCO alignment. - 2. Q108 base, transceiver on CH. 1, check to read 37.66 MHz accurate to four significant digits. If not, proceed to VCO alignment. #### **VCO Alignment** - 1. Connect VOM (DC 10V ranged) across C135 and check to read 5.0V 5.5V. - 2. Place the channel selector in the channel 1 position. - 3. Connect the VOM between ground and R114 (TP-8 side). - 4. Adjust T101 to obtain 1.5V ± .1V. - 5. Place the channel selector in the open channel position. A voltage reading of 5.1 to 5.4V should be obtained. - 6. Place the channel selector in the channel 40 position and read the value on the meter. It should be 4.0 \pm 0.6V. #### Transmitter Alignment Procedure - 1. Adjust the power supply voltage to 8.0 volts. - 2. Connect the VTVM RF probe between the base of Q111 and ground. - 3. Set the transceiver channel selector to channel 19. Perform the following procedure on channel 19. - 4. Key the transmitter. - 5. Adjust the slugs of L103, L104 and T102 for a maximum reading on the VTVM. - 6. Connect the VTVM RF probe between the base of Q112 and ground. - 7. Adjust the slug of T103 for a maximum reading on the VTVM. - 8. Adjust L109, L110 for a maximum RF power output as indicated on the wattmeter. - 9. Raise the power supply voltage to 13.8V. - 10. Repeat steps 2 thru 8. - 11. Repeat step 8 until no further improvement is noted. - 12. Back off L109 (clockwise) for a reading of 4.0 watts RF power output. - 13. Readjust L110 for a maximum power out. - 14. Repeat steps 12 and 13 until the maximum power output is 4.0 watts with L110 peaked for maximum output. Total transceiver current at this setting should not exceed 1.35A. - 15. Check power output on channels 1 and 40. Power should not be less than 3.6 watts. If less, repeat alignment procedure. #### Transmitter Frequency Check - 1. Turn the transceiver off. - 2. Connect the dummy load and frequency counter to the antenna jack as shown below. TRANSCEIVER TRANS Figure 3-2. Connection of Frequency Counter and Dummy Load - 3. Key the transmitter with the microphone PTT button. - 4. Check the frequency of each channel with the following chart. Frequencies should be within \pm 800 Hz at 25° C (Room Temperature). #### **CHANNEL FREQUENCY** | Channel | MHz | Channel | MHz | |---------|--------|---------|--------| | 1 | 26.965 | 21 | 27.215 | | 2 | 26.975 | 22 | 27.225 | | 3 | 26.985 | 23 | 27.255 | | 4 | 27.005 | 24 | 27.235 | | 5 | 27.015 | 25 | 27.245 | | 6 | 27.025 | 26 | 27.265 | | 7 | 27.035 | 27 | 27.275 | | 8 | 27.055 | 28 | 27.285 | | 9 | 27.065 | 29 | 27.295 | | 10 | 27.075 | 30 | 27.305 | | . 11 | 27.085 | 31 | 27.315 | | 12 | 27.105 | 32 | 27.325 | | 13 | 27.115 | 33 | 27.335 | | 14 | 27.125 | 34 | 27.345 | | 15 | 27.135 | 35 | 27.355 | | 16 | 27.155 | 36 | 27.365 | | 17 | 27.165 | 37 | 27.375 | | 18- | 27.175 | 38 | 27.385 | | 19 | 27.185 | 39 | 27.395 | | 20 | 27.205 | 40 | 27.405 | #### **Modulation Sensitivity Adjustment** - 1. Place the unit in the transmit mode and apply a 20 mV, 1 kHz signal to wire wrap pin 22 on the radio PC board. - 2. Adjust RV-102 to obtain 90% modulation as observed on the oscilloscope. - 3. Decrease the signal input to 6 mV. Modulation should not fall below 80%. #### Receiver Alignment Procedure #### **Equipment Set-up** Refer to Figure 3-5 for the location of components to be adjusted for receiver alignment. Figure 3-3. Equipment Set-up, Receiver Alignment #### Receiver Alignment 1. Set the Signal Generator to 27.185 MHz, \pm 1 kHz, 30% modulation and set the transceiver to channel 19. **NOTE:** This alignment should be performed with an extremely small signal input from the signal generator to avoid inaccurate alignment due to AGC action. 2. Adjust T104, T105, L112, T106, T107, T108 and T109 for maximum audio output as indicated on the AC VTVM (or oscilloscope if used). ## Tight Squelch Adjustment - 1. Set the signal generator to provide an RF input signal of 100 uV, (1 kHz, 30% modulation). - 2. Rotate the squelch control fully clockwise. - 3. Adjust RV101 so that the squelch just breaks with the 100 uV signal input. ## NOTE: - **★**1. T101 is adjusted for VCO alignment only. - ★2. RV103 not adjusted in Model 2701. Figure 3-4. Components Adjusted for Transmitter Alignment Figure 3-5. Components Adjusted for Receiver Alignment ## **CHAPTER 4-CHARTS AND DRAWINGS** #### **VOLTAGE MEASUREMENT CHART** | Ref. Desig. | Mode | E | В | С | |-------------|----------------|----------------|----------------|------------------| | Q101 | RX | 0 | .70V | 2.25V | | Q102 | TX
RX | 0 | .70V
.66V | 2.25V
2.77V | | Q103 | TX
RX | 0 | .66V
.65V | 2.77V
2.12V | | Q104 | TX
RX | 0 | .65V
.65V | 2.12V
2.17V | | Q105 | TX
RX | 0
2.46V | .65V
3.09V | 2.17V
3.91V | | Q106 | TX
RX | 2.46V
8.66V | 3.09V
9.34V | 3.91V
12.54V | | Q107 | TX
RX | 8.66V
8.67V | 9.34V
8.13V | 12.54V
.39V | | | TX | 8.75V | 8.05V | 8.68V
3.98V | | Q108 | RX
TX | .78V
.78V | 0 | 3.98V | | Q109 | RX
TX | 0
2.7V | .31V
2.8V | .31V
4.45V | | Q110 | RX
TX | 0 .
1.9V | 0
2.6V | .37,V
8.8V | | Q111 | RX
TX | 1.76V
1.7 | 2.49V
2.4V | 13.66V
13.5V | | Q112 | RX
TX | 0 | 0 | 13.38V
11.0V | | Q113 | RX
TX | 0. | 0
0 | 13.4V
11.8V | | Q114 | RX
TX | 1.55V
.38V | 2.20V
.38V | 12.71V
13.0V | | Q115 | RX
TX | 1.54V
8.1V | 2.25V
.47V | 12.09V
13.25V | | Q116 | RX
TX | ·0
0 | .61V
.61V | 0 | | Q117 | RX | 2.07V
2.07V | 2.64V
2.64V | 3.54V
3.54V | | Q118 | TX
RX | 1.48V | 2.17V | 12.11V
13V | | Q119 | TX
RX | .1V
.57V | .35V
1.26V | 12.68V
13V | | Q120 | TX
SQ | .15V
0 | .25V
.03V | 6.68V
.07V | | Q121 | UNSQ
RX | 0 | .66V
0 | 0 | | Q122 | TX
RX
TX | 0
0
0 | 0
6V
6V | 0
0
0 | IC 102 (BA 521) | Pin No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-------------|---------|----|-------|-------|-------|-------|------|--------|--------|--------| | Squelched | 12.69V | 0V | 0V | 6.76V | 6.58V | 2.45V | .10V | 13.61V | 13.64V | 13.71V | | Unsquelched | - 6.82V | 0V | 1.28V | 6.67V | 6.67V | 6.70V | .98V | 8.06V | 13.39V | 13.7V | IC 101 (P.L.L. 02A) | Pin No. | Voltage | Channels Selected | |---------|-----------|--| | 1 | 4.7 | N/A | | 2 2 | 1.8 | N/A | | 3 | 2.8 | N/A | | 4 | 4.6 | N/A | | 5 | 1.5 - 2.5 | All Channels | | 6 | 4.2 | N/A | | 7 | 0 | N/A | | 8 | 4.7 | N/A | | 9 | 4.7 | N/A | | 10 | 4.7 | N/A | | 22 | 4.7 | N/A | | 11 | 4.7 | 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 | | 12 | 4.7 | 8, 9, 10, 12, 13, 20, 21, 22, 23 | | 13 | 4.7 | 4, 5, 6, 7, 11, 12, 13, 17, 18, 19, 23 | | 14 | 4.7 | 3, 6, 7, 9, 10, 12, 13, 16, 19, 22 | | 15 | 4.7 | 2, 5, 7, 8, 10, 13, 15, 16, 18, 21, 23 | | . 16 | 0 | N/A | ## NOTE: All voltages are measured with the power supply set at exactly 13.8 VDC.